Wind Energy Forecasting Using Radial Basis Function Neural Networks

نویسندگان

  • P. Badari Narayana
  • R. Manjunatha
  • K. Hemachandra Reddy
چکیده

Wind power forecast is essential for a wind farm developer for comprehensive assessment of wind potential at a particular site or topographical location. Wind energy potential at any given location is a non –linear function of mean average wind speed, vertical wind profile, energy pattern factor, peak wind speed, prevailing wind direction, lull hours, air density and a few other parameters. Wind energy pattern data of various locationsis collected from a published resource data book by Centre for Wind Energy Technology, India.Modeling of wind energy forecasting problem consists of data collection, input-output selection, mappingand simulation. In this work, artificial neural networks technique is adopted to deal with the wind energy forecasting problem.After normalization, neural network will be run with training dataset.Radial Basis function based Neural Networks is a feed-forward algorithm of artificial neural networks that offers supervised learning.It establishes local mapping with two fold learning quickly.Wind power densities predicted for new locationsare in agreement with the measured values atthewind monitoring stations.MAPE was found out to be less than 10% for all the values of Wind Power Density predictions at new topographical locations and R is found to be nearer to unity.WPD values are multiplied by wind availability hours (generation hours) in that particular location to give number of energy units at the turbine output. These values are compared to the output of the wind turbine model installed in the same region, so as to assess the number of units generated by that particular wind turbine in the respective locations.This kind of assessment is useful for wind energy projects during feasibility studies. With this work, it is established that radial basis function neural netscan be used as a diagnostic tool for function approximation problemsconnected towind energy resourcemodeling& forecast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

Forecasting of Wind Speed Using Artificial Neural Networks

Wind speed forecast is essential in wind energy conversion system and may fail to operate power plant at non optimal region if not properly forecasted. This paper focuses the short term wind speed forecasting using conventional statistical method and artificial neural networks such as back propagation network (BPN), generalized regression neural network (GRNN) and radial basis function networks...

متن کامل

Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...

متن کامل

Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper propo...

متن کامل

Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016